Search results for "pharmacophore model"

showing 10 items of 19 documents

Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs)

2020

[Image: see text] Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been s…

010405 organic chemistryChemistryOrganic ChemistryTranslational readthroughNonsense mutationHTVSnonsense mutationOxadiazoleBenzoxazoleRibosomal RNA01 natural sciencesBiochemistrySmall molecule0104 chemical sciencescystic fibrosis010404 medicinal & biomolecular chemistrychemistry.chemical_compoundBiochemistryDrug Discoverypremature termination codonsPharmacophoreDerivative (chemistry)Pharmacophore modeling
researchProduct

Investigation of Isoindolo[2,1-a] quinoxaline-6-imines as Topoisomerase I Inhibitors with Molecular Modeling Methods

2017

Background: Isoindolo[2,1-alpha] quinoxalines constitute an important class of compounds which demonstrated potent antiproliferative activity against different human tumor cell lines and topoisomerase I inhibitors. In particular, their water soluble imine or iminium salts recently synthesized showed potent growth inhibitory effect on NCI-60 tumor cell line panel and biological studies performed on the most active compounds demonstrated that they cause DNA damage via topoisomerase I poisoning. Objective: Herein, we investigate with molecular modeling methods, the common features responsible for topoisomerase I inhibition of the water-soluble isoindolo[2,1-alpha] quinoxalin-6-imines, by compa…

0301 basic medicine030103 biophysicsMolecular modelStereochemistryDNA damageAntineoplastic AgentsIsoindolesTopoisomerase-I InhibitorCrystallography X-RayaromatechinStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundQuinoxalinetopotecanantiproliferativeCell Line TumorNeoplasmsQuinoxalinesquinoxalineDrug DiscoveryHumansCell Proliferationbiologypharmacophore modelTopoisomeraseIminiumGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaMolecular Docking SimulationTopoisomerase IindenoisoquinolineDNA Topoisomerases Type IchemistryDocking (molecular)dockingbiology.proteinMolecular MedicineTopoisomerase I; quinoxaline; antiproliferative; topotecan; aromatechin; indenoisoquinoline; docking; pharmacophore modelIminesTopoisomerase I InhibitorsPharmacophore
researchProduct

Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations.

2017

We present a new approach that incorporates flexibility based on extensive MD simulations of protein-ligand complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every representative pharmacophore model; the screening results are combined and rescored to generate a single hi…

0301 basic medicineGeneral Chemical EngineeringDrug Evaluation PreclinicalLibrary and Information SciencesMolecular Dynamics Simulationcomputer.software_genreLigandsLigandScoutCommon Hits Approach (CHA)03 medical and health sciencesMolecular dynamicsUser-Computer InterfaceComputational chemistryPharmacophore ModelingFlexibility (engineering)Virtual screeningChemistryFrame (networking)ProteinsGeneral ChemistryInto-structureSettore CHIM/08 - Chimica FarmaceuticaComputer Science Applications030104 developmental biologyData miningPharmacophorecomputerJournal of chemical information and modeling
researchProduct

Identification of estrogen receptor α ligands with virtual screening techniques.

2016

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example,…

0301 basic medicineModels MolecularQuantitative structure–activity relationshipMolecular ConformationQuantitative Structure-Activity RelationshipComputational biologyMolecular Dynamics Simulationta3111BioinformaticsLigands01 natural sciencesMolecular Docking SimulationSmall Molecule Libraries03 medical and health sciencesestrogen receptor alphaDrug DiscoveryMaterials ChemistryHumansComputer SimulationPhysical and Theoretical ChemistrySpectroscopy3D-QSARVirtual screeningDrug discoveryChemistryta1182Estrogen Receptor alphaSmall Molecule LibrariesReproducibility of Resultsmolecular dockingvirtual screeningComputer Graphics and Computer-Aided DesignSmall molecule0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyArea Under Curvepharmacophore modelingligand discoverynegative imagePharmacophoreEstrogen receptor alphaJournal of molecular graphicsmodelling
researchProduct

Evaluating the stability of pharmacophore features using molecular dynamics simulations.

2016

Abstract Molecular dynamics simulations of twelve protein—ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in …

0301 basic medicineProtein FlexibilityProtein ConformationBiophysicsStability (learning theory)Molecular Dynamics SimulationLigands01 natural sciencesBiochemistryLigandScoutSet (abstract data type)03 medical and health sciencesMolecular dynamicsComputational chemistryFeature (machine learning)Pharmacophore ModelingSensitivity (control systems)Molecular BiologyBinding Sites010405 organic chemistryChemistryStructure-based Pharmacophore ModelingMolecular DynamicProteinsHydrogen BondingCell Biology0104 chemical sciences030104 developmental biologyRankingModels ChemicalDrug DesignPharmacophoreBiological systemProtein BindingBiochemical and biophysical research communications
researchProduct

Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent

2018

Indicaxanthin is a bioactive and bioavailable betalain pigment extracted from Opuntia ficus indica fruits. Indicaxanthin has pharmacokinetic proprieties, rarely found in other phytochemicals, and it has been demonstrated that it provides a broad-spectrum of pharmaceutical activity, exerting anti-proliferative, anti-inflammatory, and neuromodulator effects. The discovery of the Indicaxanthin physiological targets plays an important role in understanding the biochemical mechanism. In this study, combined reverse pharmacophore mapping, reverse docking, and text-based database search identified Inositol Trisphosphate 3-Kinase (ITP3K-A), Glutamate carboxypeptidase II (GCPII), Leukotriene-A4 hydr…

0301 basic medicineStatistics and ProbabilityMolecular dynamicPyridinesKainate receptorIndicaxanthinPhytochemical01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDocking03 medical and health scienceschemistry.chemical_compoundNeoplasmsGlutamate carboxypeptidase IIData MiningHumansEnzyme InhibitorsMM-GBSAPharmacophore modelingBinding SitesGeneral Immunology and MicrobiologyReverse screening010405 organic chemistryAnti-cancerApplied MathematicsPhosphodiesteraseOpuntiaPhosphoserine phosphataseInositol trisphosphateGeneral MedicineAntineoplastic Agents Phytogenic0104 chemical sciencesBetaxanthinsNeoplasm ProteinsNeuromodulatorMolecular Docking SimulationAnti-inflammatory agent030104 developmental biologychemistryBiochemistryDocking (molecular)Modeling and SimulationPharmacophoreGeneral Agricultural and Biological SciencesIndicaxanthin
researchProduct

Repurposing old drugs to fight multidrug resistant cancers.

2020

Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approa…

0301 basic medicineVirtual screeningCancer ResearchDrug repurposingSettore BIO/11 - Biologia MolecolareAntineoplastic AgentsDrug resistanceBioinformatics03 medical and health sciencesClinical cancer trials; Drug repurposing; Multidrug resistant cancer; Pharmacophore modelling; Virtual screening0302 clinical medicineNeoplasmsDrug DiscoveryMedicineHumansPharmacology (medical)Computer SimulationRepurposingPharmacologyVirtual screeningDrug discoverybusiness.industryDrug RepositioningComputational BiologyDrug Resistance Multiple3. Good healthMultiple drug resistanceDrug repositioning030104 developmental biologyInfectious DiseasesOncologyDrug developmentDrug Resistance Neoplasm030220 oncology & carcinogenesisMultidrug resistant cancerPharmacophore modellingPharmacophorebusinessClinical cancer trialsDrug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy
researchProduct

Pharmacophore modeling e screening in silico di nuovi inibitori della proteina antiapoptotica Bcl-xl

2008

Bcl-xlpharmacophore modelingin silico screeningapoptosiSettore CHIM/08 - Chimica Farmaceutica
researchProduct

A Definitive Pharmacophore Modelling Study on CDK2 ATP Pocket Binders: Tracing the Path of New Virtual High-Throughput Screenings

2020

Cyclin Dependent Kinases-2 (CDK2) are members of serine/threonine protein kinases family. They play an important role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental evidence indicate that excessive expression of CDK2s should cause abnormal cell cycle regulation. Therefore, since a long time, CDK2s have been considered potential therapeutic targets for cancer therapy. In this work, onehundred and forty-nine complexes of inhibitors bound in the CDK2-ATP pocket were submitted to short MD simulations (10ns) and free energy calculation. Comparison with experimental data (K<sub>i</sub>, K<sub>d</su…

CDK20301 basic medicineComputer scienceATP pocketCancer therapyComputational biologyMolecular dynamicsTracingCommon hits approachInhibitory Concentration 5003 medical and health sciencesMolecular dynamicsAdenosine Triphosphate0302 clinical medicineNeoplasmsDrug DiscoveryHumansProtein Kinase InhibitorsThroughput (business)Eukaryotic cellMM-GBSABinding SitesbiologyCyclin-Dependent Kinase 2Cyclin-dependent kinase 2High-Throughput Screening AssaysMolecular Docking Simulation030104 developmental biology030220 oncology & carcinogenesisPharmacophore modellingPath (graph theory)biology.proteinPharmacophoreProtein BindingCurrent Drug Discovery Technologies
researchProduct

Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

2021

To date, computational approaches have been recognized as a key component in drug design and discovery workflows. Developed to help researchers save time and reduce costs, several computational tools have been developed and implemented in the last twenty years. At present, they are routinely used to identify a therapeutic target, understand ligand–protein and protein–protein interactions, and identify orthosteric and allosteric binding sites, but their primary use remains the identification of hits through ligand-based and structure-based virtual screening and the optimization of lead compounds, followed by the estimation of the binding free energy. The repurposing of an old drug for the tr…

Computational approacheModels Molecularhealth care facilities manpower and servicesChemistry Pharmaceuticaldrug discovery drug design bioinformatics Docking Molecular Dynamics pharmacophore modeling QSAR drug-repurposing SARS-CoV2educationOrganic ChemistryPharmaceutical ScienceComputational BiologyAnalytical Chemistryn/aQD241-441EditorialChemistry (miscellaneous)health services administrationDrug DiscoveryMolecular MedicineHumansThermodynamicsPhysical and Theoretical Chemistryhealth care economics and organizationsMolecules
researchProduct